Probabilistic GOSPA: A metric for performance
evaluation of multi-object filters with uncertainties

Correspondence

Abstract— This correspondence presents a probabilistic gen-
eralization of the Generalized Optimal Sub-Pattern Assignment
(GOSPA) metric, termed P-GOSPA. The GOSPA metric has been
widely used to evaluate the distance between finite sets, particularly
in multi-object estimation applications. The P-GOSPA extends
GOSPA into the space of multi-Bernoulli densities, incorporating
inherent uncertainty in probabilistic multi-object representations.
Additionally, P-GOSPA retains the interpretability of GOSPA, such
as its decomposition into localization, missed detection, and false
detection errors in a sound and meaningful manner. Examples and
simulations are provided to demonstrate the efficacy of the proposed
P-GOSPA metric.

Index Terms—Multi-object estimation, performance evaluation,
point process, multi-Bernoulli process, Wasserstein distance.

I. INTRODUCTION

Multi-object tracking (MOT) involves sequentially es-
timating the states of moving objects, which may enter or
leave the surveillance area, given noisy sensor measure-
ments [1]. When developing and testing different MOT
algorithms in varying scenarios, it is crucial to assess and
compare their performances. To achieve this, a reliable
performance metric is needed to measure the distance
between the ground truth and the estimates.

Early MOT evaluation methods rely on intuitive con-
cepts, including localization errors for properly detected
objects, as well as missed and false object detection
errors [1, Sec. 13.6], [2]-[5]. However, these methods typ-
ically rely on ad hoc mechanisms. Later, mathematically
sound MOT performance evaluation methods have been
developed based on finite sets [6], including the optimal
mass transfer (OMAT) metric [7] and the Hausdorff
metric [7]. These methods measure the distance between
the sets of ground truth objects and estimated object
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states according to a mathematically well-defined metric.
However, as discussed in [8], these two metrics both
entail a host of drawbacks. Most notably, the Hausdorff
metric is insensitive to cardinality mismatches, whereas
OMAT lacks a physically consistent interpretation when
the cardinalities of multi-object estimates differ.

To address the limitations of the OMAT and Hausdorff
metrics, the Optimal Sub-Pattern Assignment (OSPA)
metric was presented in [8], [9]. The OSPA metric
calculates normalized localization errors for optimally
associated ground truth and estimated object states while
also incorporating penalties for cardinality mismatches.
Later, an extension of OSPA without normalization was
used in [10]. While OSPA is mathematically sound and
has more reasonable interpretations in terms of varying
cardinalities, unlike traditional MOT evaluation methods,
it does not penalize missed and false detection errors
based on intuitive concepts [1, Sec. 13.6], [2]-[5].

A metric, that can quantify all the above aspects in a
mathematically consistent way, is the generalized OSPA
(GOSPA) metric, proposed in [11]. Importantly, GOSPA
penalizes localization errors for properly detected objects
as well as missed and false detection errors. Additionally,
GOSPA eliminates the spooky effect observed in optimal
multi-object estimation with OSPA [12], and it has also
shown advantages over OSPA in sensor management [13].

Most MOT algorithms rely on recursive Bayesian es-
timation, where, at each time step, estimated object states
are extracted from the multi-object posterior density. The
MOT performance is then evaluated by computing the
distance between the sets of ground truth objects and
estimated object states using metrics such as OSPA or
GOSPA. Clearly, this performance evaluating procedure
does not account for the uncertainty information in multi-
object posterior densities. One way to achieve this is
to compute the mean (G)OSPA distance, averaged over
the posterior density. However, computing the mean
(G)OSPA is often a non-trivial task, due to the lack of
analytical expressions.

In the literature, there have been only a few attempts
trying to (partially) assess the multi-object filtering per-
formance with uncertainties in an efficient and tractable
way. In [14], object state estimation uncertainties (covari-
ances) are integrated into OSPA by using the Hellinger
distance as the base distance, which has a closed-form
expression for Gaussian distributions. In [15], a quality-
based OSPA (Q-OSPA) was presented by incorporating
object existence uncertainties into OSPA. However, as
we will demonstrate later in Section II.LA, Q-OSPA is
not a mathematically well-defined metric because it fails
to satisfy the definiteness property. Furthermore, it often
lacks a reasonable physical interpretation, making it less
suitable for practical applications. More recently, the
negative log-likelihood of the multi-object posterior given
the ground truth object states, was proposed in [16] as a
performance measure. However, it is not a true metric and
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Fig. 1. An exemplary scenario with two objects and two MB set

densities. Each Bernoulli density has Gaussian single-object density,

and its existence probability is shown next to its Gaussian mean. A

desirable metric should be able to answer: 1) what is the distance
between each MB density and ground truth object states? and 2) what
is the distance between the two MB densities?

¥ (m)

e Ground truth

e Means of Gaussians of MB 1
Covariances of Gaussians of MB 1
e Means of Gaussians of MB 2
Covariances of Gaussians of MB 2

can yield infinite values for certain multi-object densities',
making it difficult to consistently distinguish between
estimation results.

Many widely used MOT algorithms, such as those
based on multi-Bernoulli (MB) conjugate priors [17]-
[20], can generate sets of state estimates representing po-
tential objects. These estimates account for both existence
uncertainty and state estimation uncertainty, encapsulated
in the form of an MB density. In addition, the set of
ground truth object states can also be regarded as an
MB density, where all the Bernoulli components have
probability of existence one and Dirac delta single-object
densities. This also holds in simulations, where sets of
ground truth objects are often obtained by sampling
from a multi-object set density. For a standard multi-
object dynamic model with MB birth [6], the multi-object
density takes the form of an MB distribution. Therefore, it
is desirable to have a metric that can fully account for the
uncertainty information captured by an MB set density,
as illustrated in Fig. 1. Furthermore, the metric should be
mathematically well-defined, physically interpretable, and
computationally practical.

In this paper, we present such a metric, which can be
considered as a probabilistic generalization of the GOSPA
(P-GOSPA) metric. While GOSPA directly measures dis-
tances between deterministic sets, P-GOSPA operates on
distributions over MB random finite sets, enabling a prin-
cipled evaluation of performance in probabilistic contexts.
We also show that P-GOSPA inherits the interpretability
of GOSPA. For a specific choice of its parameters, P-
GOSPA can be decomposed into four components: the
expected localization error and existence probability mis-
match error for correctly detected objects, along with the

!For example, when evaluating the set of ground truth objects at a multi-
Bernoulli density whose number of Bernoulli components is smaller
than the number of ground truth objects.
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expected missed and false detection errors. In addition to
MOT performance evaluation, we also demonstrate in the
simulations that P-GOSPA can be used to quantify the
approximation errors in recursive MOT filtering.

The rest of the paper is structured as follows. The
P-GOSPA metric is presented in Section II. Illustrative
examples and simulation results are shown in Section III
and Section IV, respectively. Conclusions are summarized
in Section V.

II. PROBABILISTIC GOSPA METRIC

In this section, we first introduce the MB set density,
and then we present the P-GOSPA metric, which measures
the distance between two MB set densities.

A Bernoulli process X is a random finite set with a
Bernoulli-distributed cardinality | X|, and its density is

1—r X=40
f(X)=qrp(z) X ={z} (D
0 otherwise,

where r € [0,1] is the probability of existence, and
p(+) is the single-object density conditioned on object
existence. The single object state € X belongs to the
object space X, which is locally compact, Hausdorff and
second-countable [6]. An MB process with n Bernoulli
components is a disjoint union of n independent Bernoulli
processes. Assume that the ¢-th Bernoulli component is
parameterized by 7¢ and p(-), where i € {1,...,n},
then the density of the MB process, consisting of these
Bernoulli components, can be completely described by
parameters {(r®,p*(-))} .

To introduce P-GOSPA, we first define the two MB
densities on which it is evaluated. Let fx(-) and fy (-) be
two MB densities: fx(-) has nx Bernoulli components,
where the i-th Bernoulli component is parameterized by
existence probability & € (0, 1] and single-object density
p%(-); and fy () has ny Bernoulli components, where the
j-th Bernoulli component is parameterized by existence
probability rJ € (0,1] and single-object density pJ (-).

DEFINITION 1 Let d(ps,py) denote a metric for single-
object densities p,(x) and py(y) for any single-object
states x,y € X, and let d°) (P2, py) = min(d(pz, py), ¢),
where ¢ > 0, denote the cut-off metric of d(ps,py). Let
I1,, denote the set of all permutations of {1,...,n} for
any n € N, where each element m € 11,, be a sequence
(w(1),...,m(n)). For nx < ny, the P-GOSPA metric is
defined as®

d;c’a)(fmfy)

2The expression of P-GOSPA is also valid for MB set densities having
Bernoulli components with zero existence probability. In fact, it is easy
to verify that P-GOSPA remains unchanged if an arbitrary number of
Bernoulli components with zero existence probability are appended to
one or both MB set densities. This makes sense as Bernoulli components
with zero existence probability carry no uncertainty information. Nev-
ertheless, we restrict the existence probability of Bernoulli components
to (0, 1] to ensure that P-GOSPA satisfies the definiteness property.

CORRESPONDENCE

X , , , NP
(Z [in (72,779 4 (i, 5 )

= | min
melny i1
_ N \17
+ T; _7’;(1) a:| +E Z 7‘;(1) 5 (2)
i=nx-+1

where 0 < o < 2 and 1 < p < +oo. If nx > ny,
Ay (fx, fy) 2 d (fy, fx)-

It follows directly from the definition that P-GOSPA
satisfies the non-negativity, definiteness and the symmetry
properties of a metric. The proof of the triangle inequality
is provided in Appendix A. The roles of the parameters
¢, p, and a in P-GOSPA are similar to those in GOSPA;
they will be elaborated later in Section IL.A.

We note that if all the Bernoulli components in fx(+)
and fy (-) have existence probability one and Dirac delta
single-object densities, P-GOSPA reduces to the original

GOSPA metric between the finite sets X = {x1,..., 2, }
and Y = {y1,...,Yny } [11],
die™(X,Y)
™ 7(0) c? ’
= WIGTII{IY 2 d (@5, y=())" + E(nY -nx)| , 3)

if nx < ny, and d°(X,Y) £ d(Y, X) if nx >
ny, where d(°)(z,y) is the cut-off distance of d(z,y) =
d(d,(+),6,(+)) for Dirac delta densities 0, (+), d,(-), centred
at z,y € X, respectively. Therefore, P-GOSPA can be
considered as a probabilistic generalization of GOSPA,
incorporating the uncertainties in the MB set densities.

REMARK 1 GOSPA has been extended in [11] to ground
truth and object state estimates that are random finite sets,
and it is called the average GOSPA metric [11, Prop.
2], defined as E[cfl(,c’a)(X,Y)p/}l/p/ where p' < oco. We
note that the average GOSPA metric does not have an
analytical expression in general, even if we assume that
both the sets of ground truth objects and estimated objects
have independent MB set densities. As a comparison,
P-GOSPA has an analytical expression (2) and can be
efficiently computed by solving a 2D assignment problem
using, for example, the JVC algorithm [21].

A. Interpretation of P-GOSPA

We briefly discuss the roles of d(p,,p,) and parame-
ters p, ¢ and « used in P-GOSPA. Specifically, d(p,, py)
is a metric between two probability densities on the space
X, including, e.g., Wasserstein distance, and Hellinger
distance. As a comparison, the distance metric d(z,y) in
GOSPA is defined on single object space X. The selection
of d(p.,p,) in P-GOSPA and its connection to d(x,y) in
GOSPA will be discussed later in Section III.

The maximum allowable distance between two single-
object densities is given by the cut-off distance c. The
exponent p plays a similar role as in GOSPA: larger values
of p impose stronger penalties on outliers. The parameters

p, ¢ and « collectively determine the penalization of the
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expected cardinality mismatch, with lower values of «
increasing the cost. The expected cardinality mismatch
for nxy < ny is

nx ny

Z rt — r;(i) + Z rg(i).

i=1 i=nx+1

From (2), we observe that P-GOSPA consists of two

terms: one accounting for the costs of associated pairs of
Bernoulli components, and the other capturing the costs
of unassigned components in the MB density with a larger
number of Bernoulli components.

LEMMA 1 The P-GOSPA metric between two Bernoulli
set densities fx(-) and fy(-), parameterized by existence
probability v, and r,, and single-object densities p(-)
and py(-), respectively, is

dl (fx, fv)

P
£ (min(m,ry)d(c) (Pa, Py)P + |1z — ry|2> L@

Lemma 1 is a special case of the P-GOSPA metric
(2) with nx = ny = 1. It can be seen from (4) that the
error between two Bernoulli densities can be decomposed
into the expected localization error and the existence
probability mismatch error, represented by the first and the
second term in (4), respectively. While it is reasonable to
see that the existence probability mismatch error depends
on |r, — 1|, it is not straightforward to build intuition
on why the expected localization error is influenced by
min(rg,7,). A reasonable explanation is provided in the
following Lemma.

LEMMA 2 Let the two Bernoulli set densities fx(-)
and fy(-) have Dirac delta single-object densities, and
d(6.(-),0,(-)) = d(z,y) be the p-Wasserstein distance
between point masses x and y. Then the P-GOSPA metric
between the two Bernoulli set densities is the same as the
p-Wasserstein distance W(fx, fy), using GOSPA as its
cost function between them, i.e.,

WE(fx, fy)
2 inf / / d (X, Y)Pq(X,Y) XY
a€Q(fx fy) b Jra( )
_ cP
= min(rw,ry)d(c)(x, y)P + |T-'L' - ry‘g7 (5)

where Q(fx, fy) denotes the set of all the joint distribu-
tions q for (X,Y) that have marginals fx(-) and fy(-),
respectively, and [ f(-)0X denotes the set integral [6].

We note that fx(-) and fy(-) only provide marginal
distributions of the Bernoulli sets X and Y. The Wasser-
stein distance computes the expected GOSPA under the
joint distribution ¢(X,Y") that yields the smallest value.
Naturally, Bernoulli sets X and Y should ideally either
both be empty or both be non-empty, especially when x
and y are close, giving rise to the term min(ry, 7).

Lemma 2 is based on the assumption that the single-
object densities p,(-) and p,(-) are Dirac delta functions.
If this assumption is removed, P-GOSPA can then be

interpreted as an upper bound on the p-Wasserstein dis-
tance W, (fx, fy). This relationship is formalized in the
following Proposition.

PROPOSITION 1 Let d(py,p,) be the p-Wasserstein dis-
tance between single-object densities p,.(-) and py(-). The
P-GOSPA metric between two Bernoulli set densities can
be interpreted as an upper bound on the p-Wasserstein
distance, using GOSPA as its cost function between them.

Proposition 1 is proved in Appendix B3. Lemma 2 is
a special case of Proposition 1 where the upper bound is
lifted, and it is proved in Appendix C.

REMARK 2 The P-GOSPA metric can also be interpreted
as a GOSPA metric applied to sets of Bernoulli densi-
ties. To do so, we first append Bernoulli densities with
zero existence probability to the MB with lower number
of Bernoulli components (which does not affect the P-
GOSPA metric value). The base metric for GOSPA is then
defined as in (4), and the cut-off value can be set to any
value greater than or equal to the maximum value of (4),
which is ¢/a? for 0 < o <1 and ¢ for 1 < o < 2.

REMARK 3 The incorporation of object existence proba-
bilities (also called track qualities) into MOT performance
metric was considered in [15], where the metric is called
Q-OSPA. Q-OSPA extends OSPA by proposing a new base
metric between deterministic object states with existence
uncertainties. Specifically, for two single-object states x
and y with existence probabilities r, and ry, respectively,
their distance is

d(z,y) = raryd(z,y) + (1 — 27y e (6)

This new base metric is not mathematically well-defined
since it does not satisfy the definiteness property*. More-
over, the term (1—ryry)c does not have intuitive physical
interpretation. This is because 1 — r,r, represents the
probability that at least one of the object states does
not exist, including the case where neither exists, which
should not be penalized.

B. Motivation for setting o = 2 in P-GOSPA for MOT

Similar to GOSPA, setting o = 2 in P-GOSPA is the
most suitable choice for evaluating MOT algorithms. We
demonstrate that, with this choice, the distance metric
can be decomposed into expected association errors for
properly detected objects (which have Bernoulli set den-
sities), and expected missed and false detection errors,
represented by Bernoulli components left unassigned.

Since P-GOSPA is symmetric, without loss of gener-
ality, we assume that fx(-) and fy-(-) are the ground truth
and the estimated multi-object densities, respectively. We
consider two Bernoulli components, one from fx(-) and

3The upper bound in Proposition 1 comes from the fact that the integral
of the minimum is always less than or equal to the minimum of the
integrals; the detailed derivation can be found in Appendix B.

4For example, when = = y (such that dte) (z,y) = 0) and 7, =y, for
any ra, 7y € (0,1), d (z,y) = (1 — rary)c # 0.
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the other from fy (-), each with existence probabilities 7,
ry, and single-object densities p,(-), py(-), respectively.
We further assume that p,(-) and p,(-) are sufficiently
different from any of the single-object densities in fy (-)
and fx(-), respectively. Under this case, the ground truth
Bernoulli density with p,(-) is missed detected, and the
Bernoulli component with p, (-) represents the set density
estimation of a false detected object. If none of the two
Bernoulli components have been associated to any other
Bernoulli components in the permutation 7 in (2), they,
together, contribute with a cost (r, +r,)cP/a. If the two
Bernoulli components are associated to each other in the
permutation in (2) instead, the cost of contribution of this
assignment is min(ry,r,)cP + |ry — ry|c?/a.

We argue that, for MOT performance evaluation, the
cost of one missed detection and one false detection
should, in principle, be equivalent to the cost of asso-
ciating these two Bernoulli components with each other”.
That is, it should hold that

|7y — Tylc?

P
7(% +ry)e =min(ry,ry)c? + ————,  (7)
o o

and in this case « = 2. Therefore, o = 2 in P-GOSPA is
the most appropriate choice. From this point forward, we
refer the term P-GOSPA to P-GOSPA with o = 2.

In P-GOSPA, an unassigned Bernoulli component (ei-
ther missed or false) with existence probability r always
costs rcP /2. This suggests an alternative form of the P-
GOSPA metric, consisting of expected association errors
for properly detected objects (Bernoulli components) and
costs for Bernoulli components left unassigned. Similar
to GOSPA, this alternative expression of P-GOSPA can
be reformulated in terms of 2D assignment functions.

Specifically, let v € I' be an assignment set between
{1,...,nx} and {1,...,ny} with the following proper-
ties: vy C {1,...,nx} x{1,...,ny}, (4,5),(,5') € v =
j=j"and (i,5),(i',j) € vy =i =1, where T represents
the set of all possible assignment sets. Using this, we can
formulate the following proposition.

PROPOSITION 2 For o« = 2, the P-GOSPA metric can be
formulated as an optimization problem over assignment
sets,

d\“? (fx, fr)

>

(i,5)€v

= |[min

(i i VP i | &
min mln(?"z,?"y)d(]?mpy) +|7"xfry‘§

D=

cP ; .
+5 ook > ) : (8)
V5, (4,5) ¢y 3:Vi,(4,5) €y
Proposition 2 is proved in Appendix D.

Proposition 2 confirms that P-GOSPA penalizes unas-
signed objects and association errors for properly detected

5In practice, the two costs may differ depending on the specific applica-
tion or weighting scheme used, which could influence the interpretation
of the results.

CORRESPONDENCE

objects. Specifically, the p-th order P-GOSPA consists of
four different terms:
® D (i j)ey min(ry, r4)d(pl, p)P: the expected local-
ization error for associated Bernoulli components.
® D (i j)ey ITe—7}lc?/2: the existence probability mis-
match error for associated Bernoulli components.
° cp/.2 Zi:v;‘,(i,j)g&v ri: the expected missed object de-
tection error.
° cf /2 Zj:\ﬁ’ ())& ri: the expected false object detec-
tion error.

To understand this decomposition, we note that || is the
number of pairs of associated Bernoulli components, and
i, j that are left unassigned represent indices of Bernoulli
components representing missed and false detections. We
also note that the concept of the cut-off distance d(®)(-, -)
becomes irrelevant in (8), as Bernoulli components with
single-object densities that are significantly distant from
the single-object densities of any other Bernoulli compo-
nents remain unassigned.

. ILLUSTRATIVE EXAMPLES

In this section, we give two illustrative examples to
show how P-GOSPA can quantify the uncertainties repre-
sented by MB set densities. In the examples, we set ¢ = 5,
p = 1, and we use the 2-Wasserstein distance, whose
cost function is given by the Euclidean distance, as the
base metric d(p,,p,) between two Gaussian distributions
pa(x) = N(23my, Pr) and py(y) = N(y;my, Py) [22],

)]

(©))

WQ(pm;py) =

N
SIS

1 1
[ma —my |3 + trace <P$ +P,—2 (P;Pwaz)

where P, /% is the principle square root of covariance P,.
If y becomes a point mass, i.e., p,(y) is a Dirac delta
function centered at m,,, the Wasserstein distance can be
obtained by setting P, to zero, which yields

1
Wo(pz,py) = [||ml —myll3 + trace(P,)] 2. (10)
This encodes both the mean discrepancy and the spread
(uncertainty) of the Gaussian distribution p,(z). More-
over, when both p, (x) and p, (y) are Dirac delta functions,
the Wasserstein distance between p, (x) and p,(y) reduces
to the Euclidean distance between the point masses x and
y, which is the typical distance metric used in GOSPA.
Compared to the Hellinger distance used in [14] that
is between 0 and 1, the Wasserstein distance has a more
intuitive physical interpretation, and it also has an analyt-
ical expression for particle-based state representations. In
addition, the Wasserstein distance has often been used to
measure the state estimation errors for tracking extended
objects with elliptical shapes [23].
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Example 1: P-GOSPA versus r and o2.

Fig. 2.

A. Example 1

Let us consider a 1D example, where the true object
state is at 0 m, and the MB density has a single Bernoulli
with existence probability r and Gaussian density with
mean 2m and variance o2. We further assume that the
object state estimate 2 m will be reported by the estimator
only if » > 0.5, and that the base metric in GOSPA is
the Euclidean distance. In this case, the GOSPA error is
&553) =2if r > 0.5 and &553) = 2.5 if r < 0.5, whereas
according to (4), the P-GOSPA error is

™ A+02)r+251—r). (1)

The heatmap representation of the P-GOSPA errors
versus 7 and o2, computed using (11), is shown in Fig.
2. We observe that P-GOSPA effectively accounts for the
uncertainties in the Bernoulli density, including variations
in existence probabilities and Gaussian variances, while
maintaining an (almost) smooth transition in response to
these changes. For the special case » = 0, P-GOSPA d§5’2)
is a constant since for a non-existent object, its single-
object density has no effect. We also note that when Gaus-
sian variance o2 > 21, the true object becomes missed
detected and its estimate becomes a false detection, and
thus P-GOSPA d§5’2) becomes invariant to o2.

= min(5,

B. Example 2

We consider a 2D example, in which both the ground
truth and the estimated MB densities have three Bernoulli
components, as illustrated in Fig. 3. In this example, we
study how P-GOSPA and its decomposition change with
varying cut-off distance ¢ (from 0.1 to 10 with grid size
0.1), which are shown in Fig. 4.

We will explain the results from the perspective of
optimal assignment described in Proposition 2. The be-
havior of P-GOSPA as ¢ changes can be thought of as
gradually relaxing the assignment rules. Initially, when the
cutoff distance c is small, the matching process is highly
restrictive, and most components remain unassigned. This
leads to high missed detection and false detection er-
rors because the algorithm cannot form associations. As
¢ increases and reaches certain thresholds, components

True MB density
Estimated MB density
T

h 1
-4 -2 0 2 4 6

Fig. 3. Example 2: the true and estimated MB set density. Each
Bernoulli density has Gaussian single-object density, and its existence
probability is shown next to its Gaussian mean.
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Fig. 4. Example 2: P-GOSPA and its decomposition versus c.

that are closer to each other become eligible for as-
signment. This results in a sudden decrease in missed
and false detection errors, but simultaneously introduces
localization and existence probability mismatch errors
for the assigned components. These errors reflect how
accurately the associated components match in terms of
their locations and probabilities. At higher values of ¢, all
components eventually get assigned, eliminating missed
and false detection errors entirely, while the remaining
errors stabilize, showing that all objects are accounted
for. This dynamic demonstrates how P-GOSPA captures
different aspects of error depending on the assignment
flexibility dictated by c.

IV. SIMULATION RESULTS

In this section, we compare the GOSPA and P-GOSPA
metrics by using them to evaluate the multi-object filter-
ing performance of the Poisson multi-Bernoulli mixture
(PMBM) filter [17] and the track-oriented Poisson multi-
Bernoulli (PMB) filter [18]. The closed-form solution to
MOT for the standard multi-object models with Poisson
birth [6] is given by the PMBM filter [17], [18]. The
multi-object posterior density of the PMBM filter follows
a PMBM form, where the set of undetected objects is
represented by a Poisson point process and the set of
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Fig. 5. Ground truth object trajectories used in the simulation. The
figure at the top shows the two-dimensional trajectories, and how their
decompositions into x and y dimensions vary over time is illustrated
in the two figures at the bottom. There are four objects, and they
move in proximity at time step 40 [17]. Three objects remain present
throughout the simulation, while one object disappears at time step 40.
Object positions are marked with circle every 5 time steps, and the
initial positions are also marked with cross.

detected objects is represented by an MB mixture (MBM).
If we merge the MBM into a single MB after every update
step in a track-oriented fashion, we obtain a PMB filter,
which is an efficient approximation of the PMBM filter.
Both filters are implemented with the following pa-
rameters: ellipsoidal gating size 20, maximum number of
global hypotheses 200 (found using Murty’s algorithm
[21]), threshold for pruning the Poisson intensity weights
1075, threshold for pruning Bernoulli components 1075,
In addition, for the PMBM filter, the threshold for pruning
global hypotheses is 10~#. For PMBM, to fully quantify
the uncertainty information in its MBM, we first compute
P-GOSPA between each MB density and the set of ground
truth objects and then take the weighted sum. Performance
evaluation using GOSPA requires an estimator. For both
filters, we report object position estimates from Bernoulli
components with existence probabilities greater than 0.4,
selecting them from the MB with the highest weight. In
both GOSPA and P-GOSPA, we set ¢ = 10 and p = 2.
In the simulation, we consider the same scenario as
in [17] with an area [0m,300m] x [0m,300m]. Object
states include 2D position and velocity and are generated
according to a Poisson point process birth model with
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Fig. 6. RMS GOSPA and its decomposition over time.
an intensity of 0.005. The birth density follows a single
Gaussian density with a mean of [100,0,100,0]” and a
covariance matrix given by diag([150%,1,1502,1]). We
use the nearly constant velocity motion model with a
sampling period of 1s and a noise standard deviation of
0.1. The measurement model follows a linear Gaussian
distribution with an identity noise covariance matrix.
We also use object survival probability 0.99, detection
probability 0.9, and Poisson clutter with Poisson rate 10
and uniform density. The ground truth object trajectories
are illustrated in Fig. 5.

We conduct 100 Monte Carlo simulations, and com-
pute the root-mean-square (RMS) GOSPA and P-GOSPA
errors and their decomposition at each time step for each
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Fig. 7. RMS P-GOSPA and its decomposition over time.

filter. The GOSPA error and its decomposition over time
are shown in Fig. 6, whereas the P-GOSPA error and its
decomposition over time are shown in Fig. 7. The results

—— P-GOSPA error
Expected localization error

Existence probability mismatch error
5L Expected missed detection error
Expected false detection error

RMS P-GOSPA error and its decomposition

Al SR N
0 10 20 30 40 50 60
Time step

Fig. 8. RMS P-GOSPA and its decomposition over time, where
P-GOSPA is calculated between the MBM of the updated PMBM
density (prior to the MB approximation in PMB filtering) and the MB
density (after the approximation).

show that GOSPA and P-GOSPA trends generally align,
both increasing as objects move in close proximity, with
a notable change in false detection error when one object
disappears at time step 40. One noticeable difference is
that PMBM shows larger GOSPA error than PMB when
objects move closer before time step 40. As a comparison,
PMBM almost consistently outperforms PMB in terms
of P-GOSPA. The underlying reason for this difference
becomes apparent when comparing the figures illustrating
the RMS (expected) localization errors. Specifically, the
means of Gaussian object densities reported by PMB are
generally closer to the ground truth object states, but they
also have larger covariance.

In addition to performance evaluation, P-GOSPA can
be also used to quantify the MB approximation error in
PMB filtering. Fig. 8 shows the P-GOSPA error calculated
between the MBM of the updated PMBM density (prior
to the MB approximation in PMB filtering) and the MB
density (after the approximation). The results confirm that
PMB is a less accurate representation of the multi-object
posterior compared to PMBM, primarily due to its weaker
handling of object cardinality uncertainties.

V. CONCLUSIONS

In this correspondence, we introduced a metric for
evaluating the performance of multi-object filters with
uncertainties, called P-GOSPA. P-GOSPA is a probabilis-
tic generalization of the GOSPA metric, extending it to
the space of MB densities. We demonstrated that, under
specific parameter settings, P-GOSPA can be decomposed
into four components: expected localization error and
existence probability mismatch error for correctly de-
tected objects, as well as expected missed detection and
false detection errors. An interesting direction for future
work would be to extend P-GOSPA to evaluate sets of
trajectories [24].
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Appendix A
Proof of the triangle inequality of P-GOSPA

In the proof, we will make use of an extension of the
Minkowski’s inequality to sequences of different lengths
[25, pp. 165]. Specifically, for two sequences (a;)7; and
(b;)I_, with m < n, by appending the shorter sequence
(a;) such that a; = 0 for i = m + 1,...,n and applying
Minkowski’s inequality on this extended sequence, we get

> bl )

(Z as+ b7 +
i=1 i=m—+1

< (imiw) ,,+ (Z bm)p
i=1 =1

for 1 <p < +oc0.
To prove that P-GOSPA satisfies the triangle inequal-
ity, we need to show that

dy ) (fx, fv) < A (fx, f2) + S (fv fz) (13)
for any MB densities fx(-), fy(-) and fz(-).

1

(12)

A. Triangle inequality for Bernoulli densities

Before proceeding, we first consider the special case
nx = ny = nyz = 1. In this case, P-GOSPA for Bernoulli
set densities fx(-) and fy () simplifies to

d,(f’a)(fxafy)
L <m1n (T2, 7y) d (P, py)* + 1w — 1y a) . (14)

To prove that (14) satisfies the triangle inequality, we also
need to show that (13) holds.

Without loss of generality, we assume that r, <7, as
(14) is symmetric. The proof is divided into three cases,
determined by the sizes of the existence probabilities 7,
Ty, and 7.

Case 1: r, <7y <r,. It holds that

d (fx, fv)

© . @\ 7
= | rpd (pxapy) + |7'x - Ty‘ E (15)
cP cP
< (|7’x =1l =+ ry =7 —
« «
L
(1)) 0
cP cP
= (|7’T — 7] o + |ry — 72| o
1
1 1 P\
+ (7'3;:) d(c) (pwapz) +rz d(c) (pyapz)) ) (17)
1
CP p
S <|Ta: - rz|* + Tzd(c)(pa:apz)p>
le}
cP »
+ <|ry — el +md<c>(py7pz>p> (18)

P

P
< <|7’T - rz\% + Txd(c)(pm,pz)p>

cP »
+ <|Ty - TZ|E + Tyd(c) (py7pz)p) (19)
= d© (fx, f2) +dSO(fy, f2), (20)

where we have first applied the triangle inequalities for

|ry —ry| and d)(p,,p,) from (15) to (16), and then we

have applied Minkowski’s inequality from (17) to (18).
Case 2: r, <r, <ry. It holds that

e (fx, fv)
D
< <|m — rzl% + 7,d® (pw,pz)p>

o=

. | :
+ (ry —rz|a+rxd(°)(py7pz)p> (21)
p %
S <|TQ}' - rz|g + rzd(c) (pazapz)p>
o
P © b
+ (Ty - TZ|E +7r.d'° (pyvpz)p> (22)
=d (fx, fz) +d (fy, f2), (23)
where the derivation is similar to Case 1.
Case 3: 7, <r; < ry. It holds that
dl (fx, fv)
o\ 5
= <7‘wd(c) Py py)* + (ry — Tw)a) (24)
P
< <T.Ld(6) (pxapy)p + (Ty - Tw)*
2
—(r= = 72) ( 2 —d (papy) )) (25)
P
= (rzd(c) (Pa, py)P + (rz + 1y — 2rz)a) (26)
() (© i
< (rz (d (Pz,p2) +d (py,pz)>
P\ ?
+(ry + 1y — 2rz)a> 27
5 () 5 () :
= ((rz‘"d (pa,pz) +rid"c (py,pz))
cP cP
x — lz) —rz)/ 28
+(r r)aJr(ry r)a> (28)
P\ *
< <Tzd(c) (vapz)p + (rx - Tz)ca)
1
CP P
+ (Tzd(c) (pyvpz)p + (Ty - rz)a> (29)
—d(c ) (fx, fz) +d ) fy, fz), (30)

where we have applied the fact that 0 < o < 2 from (24)
to (25), the triangle inequality from (26) to (27), and the
Minkowski’s inequality from (28) to (29).
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B. Triangle inequality for multi-Bernoulli densities

We have now finished the proof that P-GOSPA (14)
between two Bernoulli set densities satisfies the triangle
inequality. We proceed to prove that P-GOSPA satisfies
the triangle inequality for the general case (2). Without
loss of generality, we assume that nx < ny as P-GOSPA
is symmetric. The proof is divided into three cases based
on the number of Bernoulli components nx, ny, and nz.

Case 1: nx <mny <ng. For any 7 € 1I,,,,, we have

dle (fx, fv)

nx
. . P
< (Z [mm (r;,rw) d© (p pww)
=1
cP Jo
a} DY

(%)
i=nx—+1

S

+ €1y

% %
T —Ty

Using the triangle inequality on Bernoulli densities (14),
we have that for any 7 € II,,, and 0 €11, ,,

dy ) (fx, fv)
(lomti o)
(RIS LICREY

x d© ( Y )7PJ(1))p+ Cp}
a

cP < 77(2))
+ E Z ’I"y
i=nx-+1
nx
< (Z [min (r;,rg(i)) d® (p ,p2l ))
i=1
:| Z |:I’I111’1< (1) T’U(Z))
=1

c (7 o (4 P c?
« 4 <py<>7pz<)) N OJ

1
rg(t‘))

+ |rt — 9

_ rz(i)

r;r(i)

=

(32)

%
T

+ |7

r;r(i) -7

n n
D Y Y

+ SN | g +% 3

i=nx—+1 i=nx-+1

(33)
nx
< (Z [min (T’T,TZ( )) de (pz o ))
=1
I }—J—Z[mm( m(3) ”(Z))
. A\ P . .
d (50,0 4 g =2 a}
nz ‘ %
+ Z rg @ +— > r;’“)) (34)
i=nx+1 i=ny-+1

nx
< (Z [min (T;,Tg(i)) d (pi,pg(“y

CORRESPONDENCE

.
1=nx-+1

ny
. . . N\ P
i (Z [min (r;r(z)’ Tg(z)) 4@ (p;u)’ pgm)
i=1
N e %
des )

(35)

where the Minkowski’s inequality (12) is applied to arrive
at the last inequality. We further note that 7 is a bijection
that can be inverted. Denote the composition 7 = 77! o
o, which is a permutation on {1,...,nz}. Then for any

7,0 €1l,,,

dl (fx, fr)

nx
. NP
< (3 ()89 .
i=1
1
Cp Cp nz ) P
il bl o (i)
oz] + a Z " >
i=nx—+1
ny ) ) p
+ Z [mln (Ty,T;( )) d© (p;,pl“))
i=1
cP P Z A\
} e X r:<”) . G6)

1=ny-+1
which also holds for ¢ and 7 that minimize the first and
second term on the right-hand side.
This proves the triangle inequality for the case nx <
ny <ng.
Case 2: nx < nz < ny. Similar to Case 1, for any
m € 1II,, and o € II,,,, we have

i ,.7(3)
Ty r,

+

ny

de® (fx, fv)
nx P
< (3 i ) o)
i=1
P 2 ) .
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(39

The rest of the derivation is similar to the derivation from
(35) to (36).

This proves the triangle inequality for the case nx <
nyz S ny.

Case 3: nz < nx < ny. For any 7 € 1I,,,,, we have

d (fx, fr)
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< <Z [min (TL,T;(l ) d© <p;_’p;f(i)):0
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where we have applied the fact that d(°)(p,, py) < c and
that 0 < a < 2 from (40) to (41). In addition, similar to

)

Case 1 and Case 2, by first applying the triangle inequality
of (14) and then the Minkowski’s inequality, we obtain
for any 7 € II,,, and o €1I,,,,

dz(f’a)(fxfy)

nz
) (Z min (13,727 4 (5%
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S\ P
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_ _ 1
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(44)
The rest of the derivation is similar to the derivation from
(35) to (36).

This proves the triangle inequality for the case ny <
nx S ny.

+ |ri —po®
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Appendix B
Proof of Proposition 1

Suppose that we have two Bernoulli set densities fx(+)
and fy(-), defined on the space Q = {0} U {{z} € RV}.
Let OQ(fx, fy) denote the set of all the joint distributions
g for (X,Y) that have marginals fx(-) and fy (-), respec-
tively. Following [26], the p-Wasserstein distance between
fx(-) and fy(-) can be defined as

Wyo(fx, fy)
N 1/p
= (infqeg(fxyfy) / / dle™(X,Y)Pq(X, Y)(SX(SY) :
(45)
where p > 1, and d\°™(X,Y) is the GOSPA metric
between two Bernoulh sets X and Y, such that

min(d(z,y),c)? X = {z},Y = {y}

_(c,a) p_ CP/O{ X:Q),Y#@
dp" (X, Y) ?/a X#£0,Y =0
0 X=0Y=0.

(46)

Our goal is to find the joint distribution ¢ € Q(fx, fv)
(if exists) that minimizes W2 (fx, fy ), and the objective
function can be expressed as

/ / A (X, Y Pg(X,Y)5X8Y
_ / min(d(z, y), ¢)Pq({x}, {y})dady

Lo ( [ oty [ q(w,{y}>dy)

- / win(d(z, y), ¢)p(, y)dzdy / a({z}, {y})dady

47)
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(48)

+% </q({x},@)dwr/q(@,{y})dy)

where in the second equality the joint density p(z,y) is

o aleh
PUY) = TF () o) dedy

The minimization of (48) can be formulated as an optimal
transport problem, and the objective is to find the optimal

weights
/ / a({z}, {y})dedy,

[attar o+ [ a@. 1)

and ¢(0, ) (which has zero cost) that minimizes (48). We
further assume that Bernoulli set densities fx () and fy ()
are parameterized as in Lemma 1. Then the weights are
further subject to the marginal constraints

2(0.0) + / (e} 0)de =17, (52)

(49)

(50)

(G

a0.0)+ [ 4O Ay =172, (53)
/ a(0, {y})dy + / / a({2}, y})dady =,
[attzr0da+ [ [ atted tupsdy = .

We proceed to express (48) in terms of ¢(), ), which
yields

[ v, erpta, sy

(54)

(55)

X (g = 1400,0) + 5 2= 7 =y~ 2a(0,0)).

(56)
The derivative of (56) with respect to q((, 0) is

- T 2cP
[ [ mintdte.y.rpeasa -2, 6

which is always no larger than zero since 0 < o < 2
and the first term is upper bounded by c¢P. This means
that we can always find a lower (48) by increasing the
weight ¢(0,0). Since we have [q({z},0)dz > 0 and
[ (0, {y})dy > 0, it holds that

q(0,0) <min(l —ry, 1 —ry) =1 — max(ry,ry). (58)
Then to minimize (48), we simply let
q(0,0) =1 — max(ry,ry). (59)
In this case, we also have
[ attad sy = mintrear). 60
[attar0da+ [a@ iy =1 =nl. )

Note that these obtained optimal values are valid for
any possible p(x,y). Now we proceed to optimize over
p(x,y). For the first integral in the first term in (48), the
following relation holds

infp (4., / min(d(z,vy), c)’p(z,y)dxdy

CORRESPONDENCE

< min <1nfp(r,y) // J(m7y)pp(x, y)dxdyvcp> ) (62)
= d(p., py)?,

where d(°)(p,, p,) is the cut-off metric of the Wasserstein
distance between single-object densities p,.(-) and p,(-)

with d(z,y) as its cost function. Then, by plugging (60)
and (61) into (48) and using the inequality (62), we have

o ) [ [ A5 06 YUK Y )0XSY

:min(m,ry)infp(m,y)/ min(d(z,y), c)’p(x,y)drdy

P
+ |1 — Tyl —
re =1yl

P
< min(r,, ry)d(c) (Pa, Py)P + |1z — ry|%. (63)
Therefore, the P-GOSPA metric between two Bernoulli
set densities (4) with the p-Wasserstein distance as the
base distance can be interpreted as an upper bound on the
p-Wasserstein distance using GOSPA as its cost function
between the two Bernoulli set densities.
This finishes the proof of Proposition 1.

Appendix C
Proof of Lemma 2

Lemma 2 is a special case of Proposition 1. Under
the assumption that the single-object densities p,.(-) and
py(+) are Dirac delta functions d,(-) and d,(-), their joint
density p(x,y) is a product of d,(-) and &,(-). Therefore,
the inequality sign in (62) to becomes an equality sign.

Appendix D
Proof of Proposition 2

For nx < ny and o« = 2, we have

d? (fx, fv)

X . , , NP
Z [min (r;,r;r(l)) d (p;7pg(l))

= | min
mEll, i—1
1
i ~iy| & P (i !
i=nx—+1
. ) . A\ P
= nllTin Z [min (r;, r;r(z)) d (p;,p;(z))
TE n
v i:d(p;,p;(“)<c
I I R < S
Ty =Ty 2]4—2 Z Ty

i=nx—+1

{min (7";,, r;(i)) P + rfv - rg(i)

cP
]
(65)
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i 7 () c? c? - 7 (1)
T =Ty > + 0y Z Ty
i=nx+1
cP . ,
+5 > (9] (66)

i:d(pjt,p;r(i))zc
Let v, be an assignment set between the sequences
(1,...,nx) and (7(1),...,m(nx)), which satisfies v, =
{(4,5) : j = (i) and d(p;,, p}) < c}. Then we have that

d? (fx, fr)

— | min Z [min (ri rj) d(pi,pi))p

'y
€y \ e
P
w5
1
P P
C . .
+ 5 >4 vl . (67)
©:Y5,(4,5) €Y 3V, (1,5) v

Ifny > ny, d52 (fx, fy) = d%? (fy, fx). The general
expression, independent of the sizes of ny and ny, is

dl(f’Q)(fX,fY)

_ min S [min (i, rd) d (9, ))"

ﬂ‘enmax(nx,ny) (Z j)E’y
B ™

el 5]

S D T S B | IS

B =

:95,(1,5) ¢ ¥ 3:Vi,(6,9) Evx
where ~, is now an assignment set between the sequences
(1,...,min(nx,ny)) and (7(1),...,7(min(nx,ny))).

We note that when we consider all possible permuta-
tions 7, the union of all -, covers every possible pair (i, j)
that can be formed between the two sets {1,...,nx} and
{1,...,ny}. This is because for any specific pair (i, j),
we can construct a permutation such that 7 () = j. This
allows us to rewrite (68) as (8).

This finishes the proof of Proposition 2.
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